Spin-orbit couplings within the equation-of-motion coupled-cluster framework: Theory, implementation, and benchmark calculations.

نویسندگان

  • Evgeny Epifanovsky
  • Kerstin Klein
  • Stella Stopkowicz
  • Jürgen Gauss
  • Anna I Krylov
چکیده

We present a formalism and an implementation for calculating spin-orbit couplings (SOCs) within the EOM-CCSD (equation-of-motion coupled-cluster with single and double substitutions) approach. The following variants of EOM-CCSD are considered: EOM-CCSD for excitation energies (EOM-EE-CCSD), EOM-CCSD with spin-flip (EOM-SF-CCSD), EOM-CCSD for ionization potentials (EOM-IP-CCSD) and electron attachment (EOM-EA-CCSD). We employ a perturbative approach in which the SOCs are computed as matrix elements of the respective part of the Breit-Pauli Hamiltonian using zeroth-order non-relativistic wave functions. We follow the expectation-value approach rather than the response-theory formulation for property calculations. Both the full two-electron treatment and the mean-field approximation (a partial account of the two-electron contributions) have been implemented and benchmarked using several small molecules containing elements up to the fourth row of the periodic table. The benchmark results show the excellent performance of the perturbative treatment and the mean-field approximation. When used with an appropriate basis set, the errors with respect to experiment are below 5% for the considered examples. The findings regarding basis-set requirements are in agreement with previous studies. The impact of different correlation treatment in zeroth-order wave functions is analyzed. Overall, the EOM-IP-CCSD, EOM-EA-CCSD, EOM-EE-CCSD, and EOM-SF-CCSD wave functions yield SOCs that agree well with each other (and with the experimental values when available). Using an EOM-CCSD approach that provides a more balanced description of the target states yields more accurate results.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Perturbative treatment of spin-orbit-coupling within spin-free exact two-component theory using equation-of-motion coupled-cluster methods.

A scheme is reported for the perturbative calculation of spin-orbit coupling (SOC) within the spin-free exact two-component theory in its one-electron variant (SFX2C-1e) in combination with the equation-of-motion coupled-cluster singles and doubles method. Benchmark calculations of the spin-orbit splittings in 2Π and 2P radicals show that the accurate inclusion of scalar-relativistic effects us...

متن کامل

State Selective Equation of Motion Coupled Cluster Theory: Some Preliminary Results

A multireference variant of coupled cluster theory is described that applies to systems that can qualitatively be described by deleting two electrons from a closed shell determinant, for example biradicals, single bond breaking processes, or valence excited states. The theory can be generalized to arbitrary open-shell systems and takes a form that is akin to equation-of-motion coupled cluster t...

متن کامل

Double spin-flip approach within equation-of-motion coupled cluster and configuration interaction formalisms: Theory, implementation, and examples.

The spin-flip (SF) approach is extended to excitations that flip the spin of two electrons to describe multiconfigurational M(s)=0 wave functions via high spin quintet references. Equations and implementation of the double SF (2SF) approach within equation-of-motion coupled-cluster (EOM-CC) and configuration interaction (CI) formalisms are presented. The numerical performance of the resulting E...

متن کامل

Analytic gradients for the spin-conserving and spin-flipping equation-of-motion coupled-cluster models with single and double substitutions.

Analytic gradient expressions for the spin-conserving and spin-flipping equation-of-motion coupled-cluster models with single and double substitutions are derived using a Lagrangian approach for the restricted and unrestricted Hartree-Fock references, both for the case of all orbitals being active in correlated calculations and for the frozen core and/or virtual orbitals. Details of the impleme...

متن کامل

A noniterative perturbative triples correction for the spin-flipping and spin-conserving equation-of-motion coupled-cluster methods with single and double substitutions.

A noniterative N (7) triples correction for the equation-of-motion coupled-cluster method with single and double substitutions (CCSD) is presented. The correction is derived by second-order perturbation treatment of the similarity-transformed CCSD Hamiltonian. The spin-conserving variant of the correction is identical to the triples correction of Piecuch and co-workers [Mol. Phys. 104, 2149 (20...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 143 6  شماره 

صفحات  -

تاریخ انتشار 2015